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An ultrasonic plane wave reflected by a cylindrical fiber embedded in a homogeneous isotropic 
matrix is modeled. The model calculates the “back-reflection” coefficient by taking in to account 
the properties of the fiber and the matrix, the ultrasonic wavelength, the angle of incidence, and 
a coefficient called “shear stillness coefficient” which characterizes the elastic behavior between 
the fiber and the matrix. Results obtained from the theoretical analysis for a model metal matrix 
composite system are shown. The theory developed in this paper and some of the results 
obtained are equally applicable in ceramic matrix fiber reinforced composites. 

I. INTRODUCTION 

The properties of a composite system are dominated 
and determined by the behavior of the interface between 
the fiber and the matrix materials. It is at the interface that 
the load transfer takes place and the crack resistance exists. 
As a result, the characterization of the interfaces between 
various combinations of different types of fibers and matrix 
materials is of great interest to the researchers who are 
developing the composite materials. The objective of the 
evaluation of the interface would be to estimate the 
achieved inter-facial elastic behavior between the fiber and 
the matrix. A common method of the material selection 
and interface analysis process is to first fabricate a model 
monofilament composite made up of a single fiber of inter- 
est embedded in the matrix material of choice. The sample 
is usually made by diffusion bonding two plates of the 
matrix material with a fiber of interest placed between 
them. The monofilament model composite is traditionally 
further subjected to some destructive tests to characterize 
the interface. Since the destructive tests render the sample 
unusable, there is a need to develop an ultrasonic nonde- 
structive tool for the characterization of the interface in the 
model composite during the design and development of a 
new composite system. Although the ultrasonic technique 
will be developed for a monofilament composite, the 
method should be equally applicable to study the fiber- 
matrix interface in the outermost layers of a real, multifiber 
composite system. 

An ultrasonic back-reflectivity technique has been de- 
veloped to complement other existing techniques for the 
characterization of the interfacial behavior in fiber rein- 
forced model composites. These techniques may be ( 1) 
destructive: fiber “pull-out” and “push-out” tests; the “fi- 
ber fragmentation” technique implemented by subjecting 
the model composite to axial loading to induce the frag- 
mentation of the fiber and by measuring the size of the 
fragments which would be linked to the “interfacial load 
transfer behavior”;’ (2) nondestructive: ultrasonic imag- 

ing of the fiber fragmentation,“’ in conjunction with ad- 
vanced signal processing techniques.6 

The ultrasonic characterization of the interface is 
achieved by the analysis of the back-reflected signal’ from 
the fiber-matrix interface. The advantages of the ultrasonic 
back-reflectivity technique are several. One, the method is 
completely nondestructive and facilitates the use of the 
same sample for the tests (fatigue and creep) other than 
the interface analysis. Two, the technique can provide the 
distribution and variation of the inter-facial properties 
along the length of the fiber thereby facilitating better pro- 
cess control. Three, the interface can be monitored for deg- 
radation and changes during fatigue tests for life predic- 
tion. 

The goal of this study is to develop a theoretical model 
which will aid in the determination of various experimental 
parameters such as the frequency of ultrasound and angle 
of incidence while providing the vital relationship neces- 
sary to interpret the future experimental results. The the- 
oretical model will consider the reflection of an ultrasonic 
wave front from a single fiber embedded in a homogeneous 
isotropic matrix. 

II. MODEL 

Figure 1 shows the geometry of the problem: a plane 
wave exp[i(ot+&)] is obliquely incident at an angle 0 on 
a model monofilament composite immersed in a fluid of 
mass density pt, and in a plane normal to the axis of the 
fiber (w&denotes the angular frequency and kt is the wave 
number in the fluid). 

For the development of the theoretical model, the com- 
posite is simulated by an infinitely extended plate consist- 
ing of an isotropic matrix with an embedded cylindrical 
isotropic and homogeneous fiber (which is justified at the 
wavelength of interest-frequency of ultrasonic waves: 
f < 50 MHz). Further, since the ultrasonic beam is as- 
sumed to be incident on the composite such that the re- 
fracted wave is always normal to the fiber circumference 
(back-reflection interrogation technique), without the loss 
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FIG. 1. Geometry of the problem. 

of the generality, the cylindrical fiber of diameter d’ can be 
replaced with an infinitely extended homogeneous isotropic 
layer of thickness equal to the diameter of the fiber (shown 
in dotted lines in Fig. 1). Although it is relatively easy to 
model the fiber as a cylinder’ and use the Bessel function 
response of the cylinder, the present formulation of a plate 
will not deviate substantially from the reflected amplitude 
at the center of the main lobe of the Bessel function (the 
center of the main lobe of the Bessel function is the only 
point of interest for this study because the ultrasonic beam 
is normally incident to the circumference of the cylindrical 
fiber). Effects of attenuation and diffractions can also be 
considered in the model if the matrix and the fiber thick- 
nesses are significant. However, since the matrix is rela- 
tively thin (approximately five times the wavelength) for 
this application, the effect of attenuation and diffraction are 
omitted here. 

In the following analysis the symbol 6Jzn denotes the 
propagation angle of (longitudinal or shear) refracted 
waves in the matrix defined by the Snell’s law: 

sin ezn=% sin 8, 

where cl is the velocity of propagation ,of ultrasonic waves 
in the fluid and c2, is the longitudinal or shear velocity in 
the matrix, and the subscript n is L in the case of a longi- 
tudinal refracted wave, and “S’ in the case of a shear 
refracted wave. 

As the acoustic wave is incident on the composite, a 
part of the energy will be reflected into the fluid and an- 
other part of the energy will be transmitted to the matrix of 
mass density p2. Two types of waves can be propagated in 
the matrix: 

(i) In the case of a refracted longitudinal wave of dis- 
placement amplitude A,, the transmission coefficient is 
given by 

TL’; cos 2e,. 

(ii) In the case of a mode converted shear wave of 
displacement amplitude A, the transmission coefficient is 
given by 

(2) 

with the abbreviation 

%s 

( ) 

2 

M= z sin 202~ sin 282s+cos 2 282s 

6 
PlCl cm 02, -~ 

p?C2L cos 8 * (3) 

Now consider an acoustic wave (either longitudinal or 
shear) of displacement amplitude AZ,, propagating in the 
positive direction of the z’ axis and normally incident on 
the matrix-fiber interface (Fig. 1). The fiber is denoted by 
medium 3 (mass density of the fiber: p3, longitudinal or 
shear velocity of propagation of ultrasonic waves in the 
fiber: csJ, and the upper and lower regions of the matrix 
are denoted by medium 2 and medium 4, respectively. The 
two interfaces between the matrix and the plate represent- 
ing the fiber are normal to the z’ axis with the “upper” 
interface-interface A-located on the plane z’ = d, (d, is 
the distance through which the refracted waves travel in 
the matrix before incidence on the fiber, dL#ds for a given 
0 because of the assumption that the reflection coefficient is 
always measured when the refracted wave is normal to the 
circumference of the fiber) and the “lower” interface- 
interface B-on the plane z’ =d,+d’. In medium 2, for a 
given mode of wave propagation, two wave fronts are prop- 
agating: one incident (A,,) on the interface A and one 
reflected (AfJ from that interface. Also, in medium 3 two 
wave fronts are propagating: one incident (A3J on the 
interface B and one reflected (A&) from that interface. In 
medium 4, only one wave (the transmitted wave of ampli- 
tude Adn) is considered because of the configuration shown 
in Fig. 1 (i.e., no back reflection due to the angle of inci- 
dence at the lower interface between the matrix and the 
fluid). Therefore, medium 4 is equivalent to a semi-infinite 
medium. 

The displacements and the related stresses (in the di- 
rection of z’ axis) in the media 2, 3, and 4 are given by the 
expressions 

UZ~=-& expEi(mt+&z’) 1 +A& exp[i(cof--k&) 1, 
~3t~A3~ exp[i(wt+k3,$)] +Afn exp[i(ot--k3g’)], 

KI~=~,, exp[i(wt+k2,$) I; (4) 

au2n 
*2zn = Z2nC2n dz’ 9  

au4n 
04n =Z2nc2n - azf 2 

where k2n, k,, are wave numbers and Z,,, 5, are acoustic 
impedances, and the numbers in the subscripts denote the 
medium with which the quantity is associated. 
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From Eq. (5) and by taking into account Eq. (4), the 
stresses in media 2, 3, and 4 can be expressed as 

~~=iZ2~wb~CA2~ exp[iW+k2,8) 1 
-A& exp[i(of--k&l II, 

ir3n=iZ3nC&3nC&, exp[ibt+kd) 1 
--AE expLi(~~---k,$) 13, 

(f-3 

atn=iZ2,,&2nCA4n exp [ibf+k2,$) II. 
A. The interfacial conditions between the matrix and 
the fiber 

The interface between the matrix and the fiber is mod- 
eled by (i) assuming continuity of normal displacements 
and conservation of normal and shear stresses at the inter- 
face, and (ii) by allowing the discontinuity of shear dis- 
placements at the interface. It is assumed that the vibration 
is transmitted instantaneously from one medium to the 
other by weightless springs with an equivalent rigidity of 
N, (GPa/,um). 

The inter-facial stiffness coefficient N, of the matrix- 
fiber boundaries (upper and lower) can generally be dif- 
ferent around the circumference, due to the fabrication 
conditions or due to the use of different material for each 
mat@ plate. Thus, consider two different coefficients N,, 
and N,, one for each interface. Accordingly, the interface 
conditions are 

{i=O {CT=)=0 [zF]=O, 

aT=Nn [uT] (interface A) (7) 

or 

aT=ZI, Cur] (interface B), 

where the superscripts P and T denote normal or tangen- 
tial displacements (u) and stresses (a) respectively; the 
square brackets denote the jump of a function across the 
interface, and the curly brackets denote the vectorial re- 
sultant of stresses at the interface. The linearity of Eq. (7) 
is based on the assumption of small amplitudes of vibra- 
tions, which is justified for ultrasonic applications wherein 
the amplitudes of displacements are around a few ang- 
stroms. Also, 

Up=UIU P=~fit?limj, 

uT=u-upm cT=c7--ffm, 
(8) 

where m is the outward unit normal to medium 3 and u 
and u denote the displacement and traction vectors at the 
interface. 

At the two interfaces A and B, the displacement jumps 
are given by 

bTl,‘=dn=U3n(drJ) -~2nMz,O, 

(9) 

[UTlZ’,dn+d’=U4n(dn+dl,t) -U3n(&+d’J), 

and the stresses at the boundaries due to the spring forces 
are detlned by 

~r=Nn[~3,(GA --~ddn,~) I, 

&1vn[*4n(dn+dt,t) -u,,(d,+d’,t)]. 
(10) 

With the assumption of instantaneously transmitted 
stresses through the springs from medium 2 to medium 3 
and from 3 to 4 (i.e., negligible inertial forces), the bound- 
ary conditions are 

(i) at the interface A 

%n(d,,f) =ff3nWnJ) =a=w; 

(ii) at the interface B 

(11) 

a3n(dn+d’J) =g44,(d,+d’,t) =&I, (12) 

and the pressure reflection coefficient W,,===A$A& can be 
derived from Pqs. (4), (6), (ll), and (12): 

(13) 

where Ql,, Q’&, Q3,, and Q4, are complex quantities 
expressed by the equations 

Ql,=XtYi(eA- 1) +N&JXi-- Y$ (l-e;), 

Q2,=X,Y,{N,[X,(l+e~)+Y,(l--e~)) 

+N,CX,(l+e:)-YY,(l-e:)l), 

Q3,=X~Y~(e~--l)+N,#~[(X~+Y~)(l-e;) (14 

+~,Y,(l+eA)l, 
Q4,=X,Y,{N,tX,(l+e~)+Y,(l-e~)) 

+N,CX,(l+e~)+Y,(l-Ed)]), 
with 

Xn =Zatc&n = 2va,f, 

Yn =%a&, = ~~/‘&.f-~ 

eL=exp[ik3,2d’], 

en=exp[ ik2,2d,], 

(15) 

and 2 denotes the thickness of the-sample. Note that the 
case of infinitely rigid springs (N,, ,N, + 00 ) corresponds to 
perfect continuity of displacements across the interface 
(implies a mere contact for longitudinal waves and infi- 
nitely rigid interfaces for shear waves; see the appendix for 
details), and the coefficient W, is given by the simphfied 
expression 

(Xt--:)(1-e’) 
w’C(X~+Y~)(l-e’)+2X~Y~(l+e’) ’ (16) 

where_as the case of infinitely compliant springs 
(N, ,N,=O) corresponds to complete discontinuity of dis- 
placements (noncontacting surfaces for longitudinal waves 
and both noncontacting and merely contacting surfaces- 
assuming no residual stresses at the interface---for shear 
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waves; see appendix for details). Hence, in the case of 
complete discontinuity of displacement, the boundary of 
the matrix becomes a free surface and no energy is trans- 
mitted into the fiber. As a result, the magnitude of the 
reflection coefficient ( 13) becomes 

[ W,l=l (even if N,--+c0), (17) 

representing total reflection from the fiber. 
Finally, consider an ultrasonic wave of amplitude A& 

to be incident on the interface between media 2 and 1. The 
longitudinal and shear transmission coefficients at this in- 
terface can be obtained by 

2 plcl cos ~3~~~0s 2e, 
TFL=- - 

M PZCZL cos e 2 

2 plcl cos e2L~h2e2s 
TFs=--- 

J!t P2C2L cos e * (19) 

The back reflection from the fiber, represented by A-A in 
Fig. 1, is the wave front of interest for this study. 

The back-reflection coefficients for longitudinal (20) 
and shear (21) interrogation respectively, 

RL=TLWLTFL, (20) 

Rs= TsWsTFs, (21) 

are dependent on the following: 
(a) the properties of the matrix (density p2, longitu- 

dinal cZL, and shear c2, velocities), 
(b) the properties of the fiber (density p3, longitudi- 

nal c,, and shear c3s velocities), 
(c) the diameter of the fiber (d’ ), 
(d) the angle of incidence (6)) 
(e) the frequency (f) of interrogation, and- 
(f) the interfacial stiffness coefficients (N, ,N,) . 
The stiffness coefficient is dependent on the wave type 

because of the different mechanism of stress transfer for 
compressional or shear displacement waves as discussed in 
the following sections. 

B. Longitudinal wave back-reflection coefficient 

In this case, the direction of oscillation of the material 
particles is normal to the fiber surface. As a result, a mere 
contact can transmit the displacement and the normal 
stresses across the interface. Hence, this type of wave is not 
sensitive to various bonding conditions. As a result, the 
stiffness coefficient N, can take only two values: NL=O 
(for longitudinal waves, complete unbond which implies 
physical separation of the matrix and the fiber with no 
contact) or CO (for longitudinal waves, this implies all 
possibilities from a mere contact to a completely rigid 
bond). 

C. Shear wave back-reflection coefficient 

In this case, a mode converted shear wave propagating 
in the matrix will be incident normally to the fiber. There- 
fore, the direction of oscillation of the material particles 
will be tangential to the fiber surface. As a result, the in- 
terface is exposed to shear stresses which are sensitive to 

the interfacial bonding. Hence, in the case of a mere con- 
tact, no part of the tangential displacement will be trans- 
ferred to the fiber from the matrix at the interface. On the 
other hand, when the matrix and the fiber are bonded at 
the interface, a part of the tangential displacement will be 
transferred to the fiber from the matrix. The magnitude of 
the transferred displacement will be proportional to the 
rigidity of bonding. As a result, there will be a tangential 
“elastic” relative displacement at the interface which is 
proportional to the shear traction, and is characterized by 
the newly proposed positive coefficient N, . The underlying 
assumptions and modeling in the derivation of E?q. ( 2 1) for 
the back-reflection coefficient of the shear waves allow for 
intermediate bonding between N,=O and N,= 03 repre- 
senting different degrees of chemical/mechanical bonding. 
The existence of such a “degree of chemical/mechanical 
bonding” has been shown in the literature.2-5 

The shear stress behavior of the interfaces is also af- 
fected by the existence of residual stresses due to the mis- 
match of the coefficient of thermal expansion.3T5Y9 The com- 
pressive radial component of the residual stresses at the 
interface’ facilitates the transfer of shear stresses across the 
interface at room temperature even in the absence of chem- 
ical bonding thereby providing a lower limit to the exper- 
imentally measured interfacial shear stiffness coefficient 
Nsmin . However, for this study, the existence of the resid- 
ual stresses is ignored. The methodology for the estimation 
of the residual stresses and the related necessary modifica- 
tions of the experimentally measured shear stiffness coetli- 
cient (effective stiffness coefficient) can be found in the 
literature.2’5”o The properties and the reactivity of the two 
materials in contact provide an upper limit to the interface. 
stiffness coefficient Nsmax . Again, since the residual stresses 
are ignored for this theoretical modeling, Nsmax will be 
taken to be completely due to the interface. However, the 
achieved interfacial shear stiffness coefficient Ns will be 
generally between Nsmin and NsmaX depending on the pro- 
cessing parameters and conditions such as temperature, 
pressure, surface preparation, etc. 

III. NUMERICAL RESULTS--DISCUSSION 

The longitudinal waves are insensitive to the interfacial 
conditions as discussed above. Hence, all the results and 
discussions in the remaining part of this paper will be for 
the shear wave interrogation of the interface. 

The back-reflection coefficient amplitude as a function 
of interfacial stiffness and frequency for a Ti-6Al-4V/ 
SCS-6 composite (fiber diameter of 152 pm) is shown in 
Fig. 2(a). In the range of frequencies of 10-50 MHz two 
resonance peaks occur, one at 15 MHz and the other at 40 
MHz. In between the two resonances, a dip is also evident. 
Fig. 2(b) [isolevel contour map representation of Fig. 
2 (a)] shows that the frequency at which the dip occurs, for 
a given stiffness coefficient, shifts up followed by a down- 
shift as the stiflhess increases from 0 (complete unbond) to 
20 GPa/pm (almost a rigid bond). This shift is analogous 
to a behavior that would be produced by an apparent non- 
linear variation in the effective diameter of the fiber. Ad- 
ditional discussions of this behavior are provided in a later 
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FZG. 2. (a) Back-reflection coefficient amplitude as a function of inter- 
facial shear stiffness coefficient and frequency. (b) Isolevel contour map 
representation of the Data in (a). 

section of this paper and also can be found iri the litera- 
ture.“3 Figures 2(a) and 2(b) also aid in the selection of 
an appropriate frequency for the experimental evaluation” 
of the matrix-fiber interfacial properties. 

An appropriate ultrasonic frequency for the experi- 
mental interrogation is an important parameter necessary 
to improve the sensitivity of the technique. An estimation 
of the appropriate frequency of interrogation can be ob- 
tained from Figs. 3(a), 3(b), and 3(c) which are derived 
from Figs. 2 (a) and 2 (b) . The curves shown in Figs. 3 (a), 
3  (b), and 3 (c) are cross sections of the back-reflection 
coefficient surface [shown in Fig. 2(b) by lines a-a, b-b, 
and c-c, respectively] for frequencies of 16, 24, and 29 
MHz. If a  near resonance frequency such as 16 MHz [Fig. 
3 (a)] is selected for the experiments, the reflection coeffi- 
cient changes from 0.252 for a complete disbond to 0.105 
for a completely rigid interface 7.6 dB). However, if the 
frequency of interrogation is such as 24 MHz [Fig. 3(b)], 
the range of the reflection coefficient is 0.252-0.026 (19.7 
dB). The increase in the sensitivity in Fig. 3(b) compared 
to that of Fig. 3 (a) is obtained because the frequency of 
interrogation in Fig. 3 (b) is close to a resonance dip 
thereby exploiting the slope of the surface as it approaches 
the resonance dip. It is imperative that the frequency of 
interrogation should only approach the resonance dip from 
below because, otherwise, the reflection coefficient behav- 

-‘-?-- ..p? ?  ,-._  __..(...^ iT_ 
Frequency = 24.0 MHz 

-.-\ 
0.05 ‘--Y\ 

------- 
-1 

-L-L--a.- -.-.! - u 1 
5.0 10.0 15.0 20.0 

Shear stiffness Coefficient = GPa/l lm 

0.30 / r , I / . ...? 

0.25 i 
Frequency = 29.0 MHz 

1 

Shear Stiffness Coefikient (GPa&m) 

FIG. 3. (a) Back-reAection coefficient amplitude vs shear stiffness coef- 
ficient for a frequency near a resonance peak (16.0 MHz). (b) Back- 
reflection coeficient amplitude vs shear stiffness coefficient for a fre- 
quency slightly lower than the resonance dip (24.0 MHz). (c) Back- 
reflection coefficient amplitude vs shear stiffness coefficient for a 
frequency slightly higher than the resonance dip (29.0 MHz). 

ior at 29 MHz [Fig. 3 (c)] is not monotonic with respect to 
the interfacial stiffness coefficient, the same back reflected 
amplitude may correspond to various interfacial stiffness 
[as in line X-X in Fig. 3(c)]. 

A further understanding of the behavior of the reflec- 
tion coefficient as a function of the frequency of interroga- 
tion and the interfacial stiffness coefficient can be obtained 
by generating the back-reflection coefficient surface for a 
wider range of frequencies (l-150 MHz). Figure 4(a) 
shows the surface of the back-reflection coefficient and Fig. 
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Shear Stiffness Coefficient = 2.0 GPalpm 

0.0 
Shear Stiffness Coef. (GP@m) 

20.0 

PIG. 4. (a) Back-reflection coefficient amplitude as a function of inter- 
facial shear stiffness and for a range of frequencies I-150 MHz. (b) 
Isolevel projection of the data in (a). 

4(b) shows the corresponding isolevel projection. Figures 
5 (a)-5 (c) are cross sections of the surface at three differ- 
ent inter-facial stiffness coefficients [Fig. 5 (a) at almost a 
disbond of 2.0 GPa/pm, Fig. 5(b) at an intermediate level 
of bonding of 10.0 GPa/pm, and Fig. 5 (c) with a com- 
pletely rigid inter-facial bonding of 100.0 GPa/pm]. Fig- 
ures 6(a)-(c) are derived by taking cross sections of the 
surface at three different resonant peak frequencies, 15, 66, 
141 MHz, respectively. 

Figures 4(a) and 4(b) demonstrate the overall nonlin- 
ear behavior of the reflection coefficient as a function of the 
frequency and stiffness coefficient. The isolevel representa- 
tion shown in Fig. 4(b) clearly indicates the contour of the 
resonance dips evident in Fig. 4(a). From Fig. 4(b) it is 
evident that the resonant dips run parallel to each other at 
higher stiffness coefficients. However, at lower ranges of 
the stiffness coefficient, the nonlinear shift of the resonance 
dips [such as discussed earlier for Figs. 2(a) and 2(b)] 
shows a decreased sensitivity to the stiffness coefficient as 
the frequency of interrogation increases. This decreased 
sensitivity is evidenced due to the fact that the resonance 

1 I -L-I u..d 
50.0 100.0 150.0 

Frequency (MHz) 

Shear stiffness Coefficient = 10.0 GP&m 

0.0 50.0 100.0 150.0 
Freauency (MHz) 

o.,q..--v”‘-l... , ~ ,~ -r-7 
Shear stiffness CoefWant = 100.0 GPaQm 

FIG. 5. (a) Back-reflection coefficient amplitude vs frequency for a flex- 
ible bond between the matrix and the fiber (shear stiffness coefficient: 2.0 
GPa/pm). (b) Back-reflection coefficient amplitude vs frequency for an 
intermediate condition of bonding between the matrix and the fiber (shear 
stiffness coefficient: 10.0 GPa/pm). (c) Back-reflection coefficient ampli- 
tude vs frequency for “infinitely” rigid bond between the matrix and the 
iiber (shear stiffness coefficient: 100.0 GPa/pm). 

dips at progressively higher frequencies show progressively 
less nonlinearity. 

Figures 5 (a)-5 (c) show the response of the interfaces 
with different stiffness coefficients when excited with dif- 
ferent frequencies. When the bond has an almost infinite 
stiffness coefficient (for all practical purposes, 100 GPa/ 
pm), the resonance curves [Fig. 5(c)] obtained are the 
well-known symmetric lobes with the resonance peaks of 
the same amplitudes. However, as the stiffness coefficient 
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Frequency - 15.0 MHz 

5.0 10.0 15.0 
Shear Stiffness Coeffdent (GPafpm) 

Shear stiffness Caetficient = GPalpm 

Frequency = 141 .O MHz 

5.0 . . . . . . . ..-.._. >r;,o. I I , _1 
15.0 20.0 

Shear stiffness Caethcient P  GP.dpm 

FIG. 6. Resonant back-reflection coefficient amplitude vs shear stiffness 
coefficient for a given frequency of (a) 15.0 MHz, (b) 66.0 MHZ, (c) 
141.0 MHz. 

of the bond progressively decreases, the obtained resonance 
lobes become progressively nonsymmetric as shown in 
Figs. 5(a) and 5 (b) wherein the amplitudes of res.onance 
peaks are higher and higher as the frequency increases. 

at Stiffness Coettkknt = 100.0 

ar Stiffness Coefficient = 2.0 

FIG. 7. (a) Back-reflection coefEcient amplitude as a function of fre- 
quency and angle of incidence in the case of an “infinitely” rigid bond 
(shear stiffness coefficient: 100.0 GPa/pm). (b) Back-reflection coeffi- 
cient amplitude as a function of frequency and angle of incidence in the 
case of a flexible bond (shear st iE%ess coefficient: 2.0 GPa/pm). 

Figures 6(a)-6( c) provide a revealing insight into the 
behavior of the interface when interrogated with different 
frequencies. It is apparent from these figures that the range 
of change in the back-reflected amplitude due to the 
changes in the interfacial bonding is enhanced at lower 
frequencies than that at higher frequencies. This implies 
that longer wavelengths are effective to evaluate the inter- 
facial bonding because of their sensitivity to the changes in 
the stiffness of a relatively flexible bond [as indicated by the 
slope of the curve in Fig. 6(a)]. Conversely, shorter wave- 
lengths are ineffective to evaluate the interfacial stiffness 
due to their inability to sense small changes in the stiffness 
coefficient of a relatively flexible bond [as indicated by the 
slope of the curve in Fig. 6(c)]. Similar results have been 
reported by Jones and Whittier,” wherein they used dis- 

FIG. 8. Ultrasonic image of a single SCS-6 Eber embedded in Ti-6Al-4V matrix using a 50-MHz transducer at normal incidence-longitudinal wave 
interrogation. 

234 J. Appl. Phys., Vol. 74, No. 1, 1  July 1993  T. E. Matikas and P. Karpur 234  

Downloaded 19 Feb 2008 to 195.251.194.171. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



FIG). 9. Ultrasonic image of a single SCS-6 fiber embedded in Ti-6Al-4V matrix using a 25-MHz transducer at oblique incidence (between the first and 
the second critical angle), shear wave interrogation. 

pension determinant analysis to evaluate adhesive joints 
between two solid half-spaces. 

Figures 7(a) and 7(b) show the dependence of the 
back-reflection coefficient on the frequency and the angle 
of incidence for a given stiffness coefficient. Figure 7(a) is 
obtained for an infmitely rigid bond (in this instance, 100 
GPa/,um of stiffness coefficient) and shows symmetric res- 
onance peaks for all angles of incidence. However, in Fig. 
7 (b) , for a flexible bond (in this instance 2.0 GPa/pm of 
stiffness coefficient), the resonance peak amplitudes are 
strongly dependent on the angle of incidence (increasing 
resonance amplitude with frequency). Further, the reso- 
nance peaks show a plateau at higher frequencies com- 
pared to the smooth, rounded resonance lobes with a 
unique maximum amplitude at lower frequencies. Also, 
while the resonance dips (defmed by the ratio of the diam- 
eter of the fiber and the wavelength) remain equally 
spaced, the corners of the plateau progressively become 
sharper with the increase in the incident frequency. This 
means that higher frequencies begin to see this flexible 
bond as equivalent to a disbond implying that shorter 
wavelengths are less sensitive to the changes in stiffness 
coefficient of the bonding. Although the asymmetric be- 
havior is enhanced at lower angles of incidence, it is evi- 
dent at all angles of incidence. The important implication 
of the Figs. 7(a) and 7(b) is that, when the interface is 
rigid, swept frequency experiments at different angles of 
incidence will produce the symmetric profile as shown in 
Fig. 7(a). However, if the interface is flexible, the swept 
frequency experiment will produce the behavior as shown 
in Fig. 7(b). 

IV. CONCLUSION 

-4 theoretical model has been developed for the char- 
acterization of fiber/matrix “interfacial stiffness” in com- 
posites using shear wave back-reflection coefficient interro- 
gation. The model has been used to define the optimum 
experimental parameters such as frequency of interroga- 
tion and angle of incidence. The results show the need for 
selecting the frequency of interrogation carefully to avoid 
ambiguities wherein the ultrasonic reflection coefficient 
will not have a monotonic relationship to the shear stiffness 
coefficient. Also, a suitable selection of the frequency based 
on the newly developed theoretical modeling will provide a 
better dynamic range and sensitivity to the reflection coef- 
ficient analysis. Such an increase in the sensitivity can be 
obtained by avoiding the resonance peaks and valleys of 
the reflectivity surface. 
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Another important conclusion obtained from the re- 
flectivity analysis is that higher frequencies ( > 25 MHz for 
titanium-based alloy matrix) of shear wave interrogation 
are not capable of detecting flexible bonds. On the other 
hand, lower frequencies ( < 25 MHz) are relatively more 
sensitive to flexible bonds ( 5 20 GPa/,um), but insensitive 
to small changes in stiffness if the bond is already rigid 
( X 20 GPa/pm). A swept frequency reflectivity analysis at 
various angles of incidence can be used effectively to eval- 
uate the interface because of the existence of plateaux at 
higher frequencies when the bonding is flexible ( 520 
GPa/pm). The sensitivity of shear waves has been exper- 
imentally demonstrated by the C-scan images provided in 
the Appendix. 
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APPENDIX 

In order to compare longitudinal and shear interroga- 
tion and show the advantage of the use of shear waves for 
the evaluation of various interface conditions a single Sic-6 
fiber embedded in Ti-6Al-4V matrix was imaged using ( 1) 
a 50-MHz focused ultrasonic transducer at normal inci- 
dence, and (2) a 25-MHz focused ultrasonic transducer at 
oblique incidence (between the first and the second critical 
angle). The incident wave, longitudinal in case ( 1) and 
shear in case (2)) was scanned on the fiber to produce the 
C-scan images Al and A2. The results in Figs. 8 and 9 
show that the shear waves compared to longitudinal waves 
of approximately the same wavelength are more sensitive 
to the various inter-facial conditions. 
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